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Abstract

In this short note, we will give the basic results of extremal graph theory
motivated by the two geometry problems.

1. Two Geometry Questions

Motivating questions related to geometry:

1. Given n points in the plane (R?), at most how many of them can be unit
distance apart? (Erdds Unit Distance Problem, 1946)

2. Let ng > 2 be given. Find n such that, any n point in R?, no three of them
are collinear, contains ng points in conver position (all points are need for the
convex hull).

2. Notations
G = (V, E): Graph with vertex set V and edge set E (simple graph)
K, : The complete graph on m wvertices
K : The complete bipartite graph (V1, Va, E) where |V1| = s, |Va| =t

K, .5+ The complete r-partite graph (Vi,...,V,, E) where |V;| = s;
deg(v): The degree of the vertex v

e(GQ): The cardinality of edge set E, where G = (V, E)

R(n,k) : Ramsey Number

ex(n,H) : The extremal number of H



X(H) : The chromatic number of H
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e(X,Y) : The number of edges between X and Y
d(X,Y) : The density of X and Y

P : The set of all prime numbers

[n] : The set of first n positive integers

Z>g : The set of non-negative integers

3. Ramsey Numbers

R(n, k) : The minimal number m such that for every 2-coloring of K,
(Km : ([ZL]) ={AC[m]:|A] = 2}) there exists a blue K,, C K,, or there exists a

red K C K, i.e. there exists a subset X C [m] with n elements and ()2() (subsets
of X of size 2) is colored by blue, or there exists a subset Y C [m] with k elements
and (}2/) is colored by red.

e Observe that R(n,2) =n, R(2,k) =k.

e For n,k > 2, one can show that

R(n,k) < R(n—1,k) + R(n,k —1).

By induction, this proves the existence of the Ramsey numbers.

Graph: 2-graph
Hypergraph: s-graph (an edge is a set containing s elements!)

Rs(n, k), (s> 2): For s-graphs, we color subsets of size s.

We have the following bound Rs(n,k) <1+ Rs_1(Rs(n—1,k), Rs(n, k —1)).
Also, Rs(n,s) =n.

Instead of 2 colors, we can use finitely many colors:

R(nh v ank) S R(n17 sy NE—2, R(nkflank)%



(existence of K, of color i for some ). Similarly, one has

Rs(ny,...,nk) < Rs(ny, ..., ng—a, Rs(nk—1,nk)).

This proves the existence of the Ramsey numbers (multi versions).

4. Forbidding a Subgraph

Theorem 1. (Mantel, 1907) Every graph on n vertices with edge density greater

than % - 5 contains a triangle.

Theorem 2. (Roth, 1953) Every subset of Z>o with positive upper density contains
a 3-term arithmetic progression (3-AP).

We also note the following two far-reaching results of Szemerédi and Green-Tao.

o Szemerédi (1975): If A C Z>o and d(A) > 0, then A contains a k-AP for
every k > 3.

e Green-Tao (2005): P contains arbitrarily long APs.
Mantel’s theorem is equivalent of the following:
Theorem 3. (Mantel) Any triangle-free graph on n vertices has at most L%ZJ edges.

Proof. Let A C V be a maximum independent set (no edges in A). Observe that
the neighborhood of any vertex v is independent by triangle-freeness:
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So, deg(v) < |A|. Set B = V \ A. Then, every edge must have a vertex in B.
Therefore,

2 2
e(G) < Z deg(v) < |A||B| < <‘4|—;_|B> — %
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Remark 1. For equality, we need |A| = | B|, no edge in B as well, deg(v) = | A| for
all v € B:
K=z » for n even or KnT—l’nT-{—l for n odd.



Turan Graph:

T, is the complete r-partite graph K, . with

n=s+---+s, and sze{L;J,{%—‘}

Example: Tz 3 = K» 33 (edges only between V;, V; for i # j)
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o e(Tn,) S(1-Hm = ()22
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One can easily see this when r | n.
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Theorem 4. (Turdn) Any K,11-free graph on n vertices has at most e(T,, ) edges.
(T, is the unique mazimizer)

Proof. We proceed by induction on n. If n < r, then T;,, = K,, and it is the
best option. Suppose n > r and the statement holds for all graphs with less than
n vertices. Let G be a K, ;-free graph with n vertices and it has the maximal
number of edges. Thus, G has a copy of K., otherwise we add an edge. Let A be a
set of vertices which form a K., and set B =V \ A.

For every v € B, it has at most r — 1 neighbors in A.
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<1 oy Ko freenus
B [B)=p-r

Hence,

e(@) < (;) +(r=1)n—7)+ e(Tayr) = e(Th).

O

e cx(n, H) = the maximum possible number of edges in a H-free graph on n
vertices: the extremal number of H

e X(H) = the chromatic number of H

Examples:

X(Kpq) =7 +1
X(Tn,r) =r

1
ex(n, Kry1) = e(Tn,r) = (1 - =+ 0(1)) <Z)
r
If x(H) =r+1, then T, , is indeed H-free and
1 n
ex(n, H) > ex(T,) = (1 --+ 0(1)> <2)
r

How far can we go? This can be answered by the following result of Erdds-
Stone-Simonovits.

Theorem 5. (Erdés-Stone-Simonovits, 1946)

ex(n, H) = (1 - M%H + 0(1)> (’;)

e Petersen graph = H, x(H) =3 = x(K3)

| H



e There is a proof of ESS theorem which applies Szemerédi’s Regularity Lemma.
Now, we recall Szemerédi’s Regularity Lemma briefly.

For XY C V, define
e(X,Y) = [{(z,y) € X xY 12y € E(G)}]

e(X,Y)

HXY) = Tx77

e-regular pair: Let G be a graph and U, W C V. We call (U, W) an e-regular pair
in G if for all A C U, B C W with |A| > ¢|U]|,|B| > €|W|, one has:

|d(U, W) — d(A, B)| < e.
e-regular partition: The partition P = {V;,...V,},Vi U--- UV, = V, is an

e-regular partition if

> VillVi| < elV]*.

(i-))€[K]?
(Vi,Vj) not e—regular

Lemma 1. (Szemerédi’s Regularity Lemma (SGL)) For every € > 0, there exists
M € Z>q such that every graph has an e-regular partition into at most M parts.

We know that SGL = Roth’s Theorem, SGL — ESS and SGL —
Szemerédi’s Theorem (with more arguments), and hyper-regularity = multi-
dimensional Szemerédi’s Theorem.

e Zarankiewicz Problem: s <t
Theorem 6. (Kévdri-Sés—Turdn, 1954)

1
s

ex(n, Ky ;) = Os,t(n% )

Conjecture 1. (KST)
ex(n,Kq ) > cs7tn2_%

ESS open for hypergraphs: Even for K £3) (bounds via flag algebras)

Back to Erdés unit distance problem: Q1

Given n points in the plane, at most O(n%) pairs are unit distance apart.

Proof. Consider the graph on those points with edges indicating unit distance. This
graph is Ky 3—free as circles only intersect twice. We are done by KST.
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Conjecture 2. The true bound for the Erdds unit distance problem is O, (n!*¢).

Theorem 7. (Erdds-Rényi-Sos, 1966)

ex(n, Ko o) > (; _ 0(1)) 3

Proof. Let p = (1 — o(1))y/n be a prime in [z — 2°-5%° ] for = \/n, by Baker-
Harman-Pintz, 2007.
Consider G = (V, E) as follows:

fora,b=0,1,...,p—1 | (a,b) #(0,0)

x7y:0a17"'ap_1 ) (may)#((%o)

there is an edge between (a,b) and (z,y) if ax +by = 1 (mod p). (There are p? — 1
many such pairs.) For other n — p? + 1 vertices, they have degree = 0, i.e. isolated.
Notice that

axr+by=1 (mod p),

ct+dy=1 (mod p)

has at most one solution.
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So G is Ky a—free, and

1 1
Zdeg —(P*-Dp-1)= (—0(1)) n?.
2 2
UGV
(a line az + by = 1 has at least p — 1 elements) O
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e Brown (1966): ex(n, K33) > (3 —o(1)) n



e KST for K4 4 open!

Back to Q2:

Theorem 8. (Erdds-Szekeres, 1935) Let ng > 2. There exists a positive integer n
such that: Any set of n points in R2, no three of which are collinear, contains ng
points in convex position.

Proof. Let n = R4(ng,5). We give a 4-subset color blue if they are in convex posi-
tion, otherwise the color is red.

blut reh

Ramsey theorem ensures the existence of an ng-subset S C [n] with all 4-subsets
are colored by blue, or a 5-subset with all 4-subsets are colored by red.

First Case: This S is in convex position. Suppose some points are not needed and
consider a minimal subset which gives our convex hull (a polygon):

A

Xq 2

We obtain a 4-subset which is not in convex position. So, we are done.

Second Case: This is impossible due to the Happy Ending Problem by Esther. [



Lemma 2. (Happy Ending Problem) Every set with 5 points
them lie on a line, always contains 4 points in convex position.

Proof. The following figure is the proof:
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Enough to check: 2,3,4,5 (BCDE), 14 (ABDE), 15 (ACDE)
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