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Abstract

In this short note, we will give the basic results of extremal graph theory
motivated by the two geometry problems.

1. Two Geometry Questions

Motivating questions related to geometry:

1. Given n points in the plane (R2), at most how many of them can be unit
distance apart? (Erdős Unit Distance Problem, 1946)

2. Let n0 ≥ 2 be given. Find n such that, any n point in R2, no three of them
are collinear, contains n0 points in convex position (all points are need for the
convex hull).

2. Notations

G = (V,E): Graph with vertex set V and edge set E (simple graph)

Km : The complete graph on m vertices

Ks,t : The complete bipartite graph (V1, V2, E) where |V1| = s, |V2| = t

Ks1,...,sr : The complete r-partite graph (V1, . . . , Vr, E) where |Vi| = si

deg(v): The degree of the vertex v

e(G): The cardinality of edge set E, where G = (V,E)

R(n, k) : Ramsey Number

ex(n,H) : The extremal number of H
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χ(H) : The chromatic number of H

Tn,r : Turán Graph

e(X,Y ) : The number of edges between X and Y

d(X,Y ) : The density of X and Y

P : The set of all prime numbers

[n] : The set of first n positive integers

Z≥0 : The set of non-negative integers

3. Ramsey Numbers

R(n, k) : The minimal number m such that for every 2-coloring of Km(
Km :

(
[m]
2

)
= {A ⊆ [m] : |A| = 2}

)
there exists a blue Kn ⊆ Km or there exists a

red Kk ⊆ Km i.e. there exists a subset X ⊆ [m] with n elements and
(
X
2

)
(subsets

of X of size 2) is colored by blue, or there exists a subset Y ⊆ [m] with k elements
and

(
Y
2

)
is colored by red.

• Observe that R(n, 2) = n, R(2, k) = k.

• For n, k > 2, one can show that

R(n, k) ≤ R(n− 1, k) +R(n, k − 1).

By induction, this proves the existence of the Ramsey numbers.

• Graph: 2-graph
Hypergraph: s-graph (an edge is a set containing s elements!)

• Rs(n, k), (s ≥ 2): For s-graphs, we color subsets of size s.

• We have the following bound Rs(n, k) ≤ 1 +Rs−1(Rs(n− 1, k), Rs(n, k− 1)).
Also, Rs(n, s) = n.

• Instead of 2 colors, we can use finitely many colors:

R(n1, . . . , nk) ≤ R(n1, . . . , nk−2, R(nk−1, nk)),
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(existence of Kni
of color i for some i). Similarly, one has

Rs(n1, . . . , nk) ≤ Rs(n1, . . . , nk−2, Rs(nk−1, nk)).

This proves the existence of the Ramsey numbers (multi versions).

4. Forbidding a Subgraph

Theorem 1. (Mantel, 1907) Every graph on n vertices with edge density greater
than 1

2 ·
n

n−1 contains a triangle.

Theorem 2. (Roth, 1953) Every subset of Z≥0 with positive upper density contains
a 3-term arithmetic progression (3-AP).

We also note the following two far-reaching results of Szemerédi and Green-Tao.

• Szemerédi (1975): If A ⊆ Z≥0 and d̄(A) > 0, then A contains a k-AP for
every k ≥ 3.

• Green-Tao (2005): P contains arbitrarily long APs.

Mantel’s theorem is equivalent of the following:

Theorem 3. (Mantel) Any triangle-free graph on n vertices has at most bn
2

4 c edges.

Proof. Let A ⊆ V be a maximum independent set (no edges in A). Observe that
the neighborhood of any vertex v is independent by triangle-freeness:

So, deg(v) ≤ |A|. Set B = V \ A. Then, every edge must have a vertex in B.
Therefore,

e(G) ≤
∑
v∈B

deg(v) ≤ |A||B| ≤
(
|A|+ |B|

2

)2

=
n2

4
.

Remark 1. For equality, we need |A| = |B|, no edge in B as well, deg(v) = |A| for
all v ∈ B:

Kn
2 ,n2

for n even or Kn−1
2 ,n+1

2
for n odd.
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Turán Graph:

Tn,r is the complete r-partite graph Ks1,...sr with

n = s1 + · · ·+ sr and si ∈
{⌊n

r

⌋
,
⌈n
r

⌉}
.

Example: T8,3 = K2,3,3 (edges only between Vi, Vj for i 6= j)

• e(Tn,r) ≤ (1− 1
r )n2

2 =
(
r
2

)
n
r ·

n
r .

One can easily see this when r | n.

Theorem 4. (Turán) Any Kr+1-free graph on n vertices has at most e(Tn,r) edges.
(Tn,r is the unique maximizer)

Proof. We proceed by induction on n. If n ≤ r, then Tn,r = Kn, and it is the
best option. Suppose n > r and the statement holds for all graphs with less than
n vertices. Let G be a Kr+1-free graph with n vertices and it has the maximal
number of edges. Thus, G has a copy of Kr, otherwise we add an edge. Let A be a
set of vertices which form a Kr, and set B = V \A.
For every v ∈ B, it has at most r − 1 neighbors in A.
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Hence,

e(G) ≤
(
r

2

)
+ (r − 1)(n− r) + e(Tn−r,r) = e(Tn,r).

• ex(n,H) = the maximum possible number of edges in a H-free graph on n
vertices: the extremal number of H

• χ(H) = the chromatic number of H

Examples:

χ(Kr+1) = r + 1

χ(Tn,r) = r

•
ex(n,Kr+1) = e(Tn,r) =

(
1− 1

r
+ o(1)

)(
n

2

)
If χ(H) = r + 1, then Tn,r is indeed H-free and

ex(n,H) ≥ ex(Tn,r) =

(
1− 1

r
+ o(1)

)(
n

2

)
.

How far can we go? This can be answered by the following result of Erdős-
Stone-Simonovits.

Theorem 5. (Erdős-Stone-Simonovits, 1946)

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
• Petersen graph = H, χ(H) = 3 = χ(K3)
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• There is a proof of ESS theorem which applies Szemerédi’s Regularity Lemma.
Now, we recall Szemerédi’s Regularity Lemma briefly.

For X,Y ⊆ V , define

e(X,Y ) = |{(x, y) ∈ X × Y : xy ∈ E(G)}|

d(X,Y ) =
e(X,Y )

|X||Y |
.

ε-regular pair: Let G be a graph and U,W ⊆ V. We call (U,W ) an ε-regular pair
in G if for all A ⊆ U,B ⊆W with |A| ≥ ε|U |, |B| ≥ ε|W |, one has:

|d(U,W )− d(A,B)| ≤ ε.

ε-regular partition: The partition P = {V1, . . . Vk}, V1 t · · · t Vk = V , is an
ε-regular partition if ∑

(i,j)∈[k]2
(Vi,Vj) not ε−regular

|Vi||Vj | ≤ ε|V |2.

Lemma 1. (Szemerédi’s Regularity Lemma (SGL)) For every ε > 0, there exists
M ∈ Z≥0 such that every graph has an ε-regular partition into at most M parts.

We know that SGL =⇒ Roth’s Theorem, SGL =⇒ ESS and SGL =⇒
Szemerédi’s Theorem (with more arguments), and hyper-regularity =⇒ multi-
dimensional Szemerédi’s Theorem.

• Zarankiewicz Problem: s ≤ t

Theorem 6. (Kővári–Sós–Turán, 1954)

ex(n,Ks,t) = Os,t(n
2− 1

s )

Conjecture 1. (KST)
ex(n,Ks,t) ≥ cs,tn2−

1
s

ESS open for hypergraphs: Even for K(3)
4 (bounds via flag algebras)

Back to Erdős unit distance problem: Q1

Given n points in the plane, at most O(n
3
2 ) pairs are unit distance apart.

Proof. Consider the graph on those points with edges indicating unit distance. This
graph is K2,3−free as circles only intersect twice. We are done by KST.
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Conjecture 2. The true bound for the Erdős unit distance problem is Oε(n
1+ε).

Theorem 7. (Erdős-Rényi-Sós, 1966)

ex(n,K2,2) ≥
(

1

2
− o(1)

)
n

3
2

Proof. Let p = (1 − o(1))
√
n be a prime in [x − x0.525, x] for x =

√
n, by Baker-

Harman-Pintz, 2007.
Consider G = (V,E) as follows:

for a, b = 0, 1, . . . , p− 1 , (a, b) 6= (0, 0)

x, y = 0, 1, . . . , p− 1 , (x, y) 6= (0, 0)

there is an edge between (a, b) and (x, y) if ax+ by ≡ 1 (mod p). (There are p2− 1
many such pairs.) For other n− p2 + 1 vertices, they have degree = 0, i.e. isolated.
Notice that

ax+ by ≡ 1 (mod p),

cx+ dy ≡ 1 (mod p)

has at most one solution.

So G is K2,2−free, and

e(G) =
1

2

∑
v∈V

deg(v) ≥ 1

2
(p2 − 1)(p− 1) =

(
1

2
− o(1)

)
n

3
2 .

(a line ax+ by = 1 has at least p− 1 elements)

• Brown (1966): ex(n,K3,3) ≥
(
1
2 − o(1)

)
n

5
3
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• KST for K4,4 open!

Back to Q2:

Theorem 8. (Erdős-Szekeres, 1935) Let n0 ≥ 2. There exists a positive integer n
such that: Any set of n points in R2, no three of which are collinear, contains n0
points in convex position.

Proof. Let n = R4(n0, 5). We give a 4-subset color blue if they are in convex posi-
tion, otherwise the color is red.

Ramsey theorem ensures the existence of an n0-subset S ⊆ [n] with all 4-subsets
are colored by blue, or a 5-subset with all 4-subsets are colored by red.

First Case: This S is in convex position. Suppose some points are not needed and
consider a minimal subset which gives our convex hull (a polygon):

We obtain a 4-subset which is not in convex position. So, we are done.

Second Case: This is impossible due to the Happy Ending Problem by Esther.
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Lemma 2. (Happy Ending Problem) Every set with 5 points in R2, no three of
them lie on a line, always contains 4 points in convex position.

Proof. The following figure is the proof:

Enough to check: 2,3,4,5 (BCDE), 14 (ABDE), 15 (ACDE)
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